Periodic Boundary Value Problems for Functional Differential Equations with Impulses
نویسندگان
چکیده
منابع مشابه
Periodic Boundary Value Problems for Second-Order Functional Differential Equations
Upper and lower solution method plays an important role in studying boundary value problems for nonlinear differential equations; see 1 and the references therein. Recently, many authors are devoted to extend its applications to boundary value problems of functional differential equations 2–5 . Suppose α is one upper solution or lower solution of periodic boundary value problems for second-orde...
متن کاملPeriodic Boundary Value Problems for Semilinear Fractional Differential Equations
We study the periodic boundary value problem for semilinear fractional differential equations in an ordered Banach space. The method of upper and lower solutions is then extended. The results on the existence of minimal and maximal mild solutions are obtained by using the characteristics of positive operators semigroup and the monotone iterative scheme. The results are illustrated by means of a...
متن کاملPeriodic Boundary Value Problem for First Order Differential Equations with Impulses at Variable Times
There exist several papers about boundary value problems with impulŽ sive effects at fixed points, but the different techniques employed for w x w x instance, limit arguments in 1, 3 , topological degree 10 , fixed point w x w x. theorems 9 or set-valued maps 2 do not seem applicable to problems with impulses at variable times. Ž w x. Recently, some comparison principles have appeared see 4, 8 ...
متن کاملPeriodic boundary value problems for second-order functional differential equations with impulse
where J = [,T], f : J×Cτ → R is a continuous function, φ ∈ Cτ (Cτ be given in Section ), τ ≥ , ρ(t) ∈ C(J , (,∞)), ut ∈ Cτ , ut(θ ) = u(t + θ ), θ ∈ [–τ , ]. Ik ∈ C(Cτ ,R), = t < t < t < · · · < tm < tm+ = T , J ′ = (,T)\{t, . . . , tm}. u′(tk) = u′(t+ k )–u′(t– k ), u′(t+ k ) (u′(t– k )) denote the right limit (left limit) of u′(t) at t = tk , and A ∈ R = (–∞, +∞). Impulsive diffe...
متن کاملExistence of Solutions to Anti-Periodic Boundary Value Problem for Nonlinear Fractional Differential Equations with Impulses
This paper discusses the existence of solutions to antiperiodic boundary value problem for nonlinear impulsive fractional differential equations. By using Banach fixed point theorem, Schaefer fixed point theorem, and nonlinear alternative of Leray-Schauder type theorem, some existence results of solutions are obtained. An example is given to illustrate the main result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1997
ISSN: 0022-247X
DOI: 10.1006/jmaa.1997.5382