Periodic Boundary Value Problems for Functional Differential Equations with Impulses

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Boundary Value Problems for Second-Order Functional Differential Equations

Upper and lower solution method plays an important role in studying boundary value problems for nonlinear differential equations; see 1 and the references therein. Recently, many authors are devoted to extend its applications to boundary value problems of functional differential equations 2–5 . Suppose α is one upper solution or lower solution of periodic boundary value problems for second-orde...

متن کامل

Periodic Boundary Value Problems for Semilinear Fractional Differential Equations

We study the periodic boundary value problem for semilinear fractional differential equations in an ordered Banach space. The method of upper and lower solutions is then extended. The results on the existence of minimal and maximal mild solutions are obtained by using the characteristics of positive operators semigroup and the monotone iterative scheme. The results are illustrated by means of a...

متن کامل

Periodic Boundary Value Problem for First Order Differential Equations with Impulses at Variable Times

There exist several papers about boundary value problems with impulŽ sive effects at fixed points, but the different techniques employed for w x w x instance, limit arguments in 1, 3 , topological degree 10 , fixed point w x w x. theorems 9 or set-valued maps 2 do not seem applicable to problems with impulses at variable times. Ž w x. Recently, some comparison principles have appeared see 4, 8 ...

متن کامل

Periodic boundary value problems for second-order functional differential equations with impulse

where J = [,T], f : J×Cτ → R is a continuous function, φ ∈ Cτ (Cτ be given in Section ), τ ≥ , ρ(t) ∈ C(J , (,∞)), ut ∈ Cτ , ut(θ ) = u(t + θ ), θ ∈ [–τ , ]. Ik ∈ C(Cτ ,R),  = t < t < t < · · · < tm < tm+ = T , J ′ = (,T)\{t, . . . , tm}. u′(tk) = u′(t+ k )–u′(t– k ), u′(t+ k ) (u′(t– k )) denote the right limit (left limit) of u′(t) at t = tk , and A ∈ R = (–∞, +∞). Impulsive diffe...

متن کامل

Existence of Solutions to Anti-Periodic Boundary Value Problem for Nonlinear Fractional Differential Equations with Impulses

This paper discusses the existence of solutions to antiperiodic boundary value problem for nonlinear impulsive fractional differential equations. By using Banach fixed point theorem, Schaefer fixed point theorem, and nonlinear alternative of Leray-Schauder type theorem, some existence results of solutions are obtained. An example is given to illustrate the main result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1997

ISSN: 0022-247X

DOI: 10.1006/jmaa.1997.5382